翻訳と辞書
Words near each other
・ Complete Works of Voltaire
・ Complete-linkage clustering
・ Completed revelation
・ Completed staff work
・ Completed-contract method
・ CompleteFTP
・ Completely
・ Completely (Christian Bautista album)
・ Completely (Diamond Rio album)
・ Completely distributive lattice
・ Completely Fair Scheduler
・ Completely Free
・ Completely in Luv'
・ Completely metrizable space
・ Completely multiplicative function
Completely positive map
・ Completely randomized design
・ Completely regular semigroup
・ Completely Serious
・ Completely uniformizable space
・ Completely Well
・ Completely-S matrix
・ CompletelyNovel
・ Completement Nue Au Soleil
・ Completeness
・ Completeness (cryptography)
・ Completeness (knowledge bases)
・ Completeness (logic)
・ Completeness (order theory)
・ Completeness (statistics)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Completely positive map : ウィキペディア英語版
Completely positive map
In mathematics a positive map is a map between C
*-algebra
s that sends positive elements to positive elements. A completely positive map is one which satisfies a stronger, more robust condition.
== Definition ==

Let A and B be C
*-algebra
s. A linear map \phi: A\to B is called positive map if \phi maps positive elements to positive elements: a\geq 0 \implies \phi(a)\geq 0.
Any linear map \phi:A\to B induces another map
:\textrm \otimes \phi : \mathbb^ \otimes A \to \mathbb^ \otimes B
in a natural way. If \mathbb^\otimes A is identified with the C
*-algebra A^ of k\times k-matrices with entries in A, then \textrm\otimes\phi acts as
:
\begin
a_ & \cdots & a_ \\
\vdots & \ddots & \vdots \\
a_ & \cdots & a_
\end \mapsto \begin
\phi(a_) & \cdots & \phi(a_) \\
\vdots & \ddots & \vdots \\
\phi(a_) & \cdots & \phi(a_)
\end.

We say that \phi is k-positive if \textrm_} \otimes \Phi is a positive map, and \phi is called completely positive if \phi is k-positive for all k.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Completely positive map」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.